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Abstract

We extend the classic multi-armed bandit (MAB) model to the setting of noncompliance,
where the arm pull is a mere instrument and the treatment applied may di↵er from it,
which gives rise to the instrument-armed bandit (IAB) problem. The IAB setting is relevant
whenever the experimental units are human since free will, ethics, and the law may prohibit
unrestricted or forced application of treatment. In particular, the setting is relevant in
bandit models of dynamic clinical trials and other controlled trials on human interventions.
Nonetheless, the setting has not been fully investigate in the bandit literature. We show
that there are various and divergent notions of regret in this setting, all of which coincide
only in the classic MAB setting. We characterize the behavior of these regrets and analyze
standard MAB algorithms. We argue for a particular kind of regret that captures the causal
e↵ect of treatments but show that standard MAB algorithms cannot achieve sublinear
control on this regret. Instead, we develop new algorithms for the IAB problem, prove
new regret bounds for them, and compare them to standard MAB algorithms in numerical
examples.

Keywords: Multi-armed bandit, online learning, instrumental variables, noncompliance,
causal inference.

1. Introduction

Multi-armed bandits (MABs) are often used to model dynamic clinical trials (Villar et al.,
2015). In a clinical trial interpretation of an MAB, an experimenter applies one of m

treatments to each incoming patient, the reward of the applied treatment is recorded, and
the target is to learn what the best treatment is so as to ensure that the average of all
patient rewards over the trial is near-optimal. However, when patients are human, free will,
ethics, and the rule of law often prohibit completely liberal application of treatment by the
experimenter. In particular, patients may choose not to comply with the treatment assigned.
By some estimates, non-compliance rates in some clinical contexts may be as high as 50%
(Wright, 1993). In real clinical trials, subject non-compliance is generally present and can
often constitute a significant e↵ect. The same may occur in non-clinical dynamic randomized
controlled trials (RCTs) interpretations of MABs, such as trials investigating policy and
training interventions. Whenever the experimental unit is human, non-compliance may be
a significant presence.

This departure from the standard MAB model has not been fully investigated in the
bandit literature but nonetheless can have significant implications on both performance

1



Kallus

metrics and what constitutes a good bandit algorithm. In particular, almost all bandit
models assume full control of treatment assignment or do consider perturbations to control
(as in an MDP) but do not consider regret quantities that correspond to the causal e↵ect
of treatment and to bandit algorithms that are aimed at finding the treatment(s) with the
best causal e↵ect.

The purpose of this paper is to explore the implications of non-compliance for MABs and
develop new theory and methods appropriate for these settings. Toward this end, we define
the instrument-armed bandit problem where arms do not necessarily correspond to the
treatment administered and establish a number of new regret quantities that are of unique
interest in this setting. We characterize these regret quantities in various di↵erent settings
of non-compliance and analyze the corresponding regret of standard MAB algorithms like
the upper confidence bound (UCB) algorithm. We find that standard MAB algorithms can
fail to achieve sublinear regret on the compliers (which we define) and can fail to learn
what is the best treatment. We therefore develop new bandit algorithms that address this
issue and prove new regret bounds for these algorithms. We conclude with a numerical
investigation.

2. The Instrument-Armed Bandit Problem

In the presence of non-compliance, the assignment to treatment – or arm pull – by the
experimenter is a mere instrument: it does not guarantee the application of the treatment
but it may influence it. In the language of econometrics (Angrist and Pischke, 2008),
the variable indicating assignment to treatment is an instrumental variable. Thus, in the
presence of non-compliance, the pull of an arm corresponds only to the intent to treat (ITT)
rather than the administration of treatment and there may exist confounding between the
treatment variable and the outcomes that obscure the actual causal e↵ect of treatments.

We call the bandit problem that arises in the presence of non-compliance the instrument-
armed bandit (IAB) problem because each arm pull represents only the choice of instrument.
We consider the IAB problem with m arms where each arm represents both an instrument
and a treatment. Unlike the standard MAB problem, the IAB problem involves two forms
of bandit feedback: the reward of the treatment applied and the identity of the treatment
applied, which we assume is always observed.

In the presence of non-compliance, whether a subject complies with an assigned treat-
ment, that is, whether the treatment assigned is also applied, generally depends to a great
extent on the subject and on the treatment assigned. Some subjects may be averse to new,
intense, or invasive treatments and reject these when assigned. Others may be more eager
to try these treatments and may reject insu�ciently-intensive treatments. Consequently,
the correlation between treatment administered and outcomes does not represent the causal
e↵ect e↵ect of administering the treatment to any one subject.

Depending on the application, certain modes of non-compliance may be ruled out: in
some settings a subject can demand any one treatment and in other settings a subject can
only reject a new or invasive treatment but cannot demand it unless assigned to it. Assum-
ing, as we do, that we observe the treatment (or non-treatment, for that matter) in-fact
applied to the unit, the compliance of the unit is an incomplete observation and comprises a
form of bandit feedback : we only know the compliance or non-compliance resulting from the
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Figure 1: The Instrumental Variable Model

YXZ

treatment assigned. For example, a subject eager to try intensive treatment may appear to
comply when given such an assignment and may appear not to comply when given another
assignment.

We formulate this by saying that an experimental unit is characterized by a vector of m
integers � = (�(1), . . . ,�(m)), each taking values in [m] = {1, . . . ,m} and each denoting the
treatment in-fact applied if the respective arm is pulled. Thus, when we pull arm z 2 [m],
the realized-treatment feedback we observe is �(z). As with unrealized rewards in standard
MAB problems, �(z0) for other arms z0 are not observed. We call � the compliance type of
an experimental unit.

A unit is said to be a complier if it complies with any treatment assigned. That is,
letting ◆ = (1, . . . ,m) so that ◆(z) = z is the identity mapping, a unit is complier whenever
� = ◆. A unit is a non-complier if � 6= ◆. One particular type of non-compliers are always-
takers: letting 

(t) = (t, . . . , t) for t 2 [m] so that (t)(z) = t for all z 2 [m], a unit is said
to be a t-always-taker if � = 

(t).
As in the standard MAB problem, each unit is also characterized by m reward values

Y (1), . . . , Y (m) taking values on the real line. When the treatment applied is x, the re-
ward observed is Y (x). We will assume that high rewards are preferable. The variables
�(1), Y (1), . . . ,�(m), Y (m) denote a generic draw of an experimental unit from a population
of units.

In the IAB problem, at each round t = 1, 2, . . . , an incoming unit given by (�t(1), Yt(1),
. . . ,�t(m), Yt(m)) is drawn at random from the population of units, independently from past
draws and past actions. With nothing about the unit revealed, the experimenter chooses an
intended arm Zt 2 [m]. The treatment actually applied is Xt = �t(Zt), which is revealed,
and the reward collected is Yt = Yt(�t(Zt)), which is also revealed.1 We summarize the IAB
problem as:

The instrument-armed bandit problem
For each round t = 1, 2, . . .

1. �t(1), Yt(1), . . . ,�t(m), Yt(m) are drawn independently from the past and
are hidden;

2. the experimenter pulls arm Zt 2 [m];
3. Xt = �t(Zt) and Yt = Yt(�t(Zt)) are revealed.

The parameters of the problem revealed to the experimenter at the onset are the number of
armsm and, potentially but not necessarily, the number of rounds T . The hidden parameter
characterizing an instance of the IAB problem is the distribution of units (step 1 above).
The distribution of � and the conditional marginal distributions of Y (x) given � for each x

1. Note that in our notation, �t = (�t(1), . . . ,�t(m)) is a vector of potential treatments whereas Yt is a

scalar realized reward and should not be confused with the vector (Yt(1), . . . , Yt(m)) of potential rewards.
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separately are denoted by

p = P(� = ), ⌫x|(A) = P(Y (x) 2 A | � = ).

We assume that
R
|y| d⌫x| < 1 for all x 2 [m], 2 [m]m and define:

µx| = E[Y (x) | � = ] =
R
yd⌫x|,

µx = E[Y (x)] =
P

2[m]m pµx|,

µ̃z = E[Y (�(z))] =
P

2[m]m pµ(z)|.

An instance of IAB is said to be an instance of MAB when p◆ = 1, i.e., when all units are
compliers. In this case, the IAB problem reduces to the standard stochastic MAB problem
with arm reward distributions ⌫x|◆ (for more on stochastic MAB, we refer the reader to
Bubeck and Cesa-Bianchi 2012 p. 4).

The setting of the IAB problem can also be represented as a directed acyclic graph
following the framework of (Pearl, 2009) as shown in Fig. 1. The bidirectional arrow between
the treatment variable X and outcome variable Y indicates that there may be hidden
confounding between the two. The confounding arises from the fact that both treatment and
outcomes are associated with compliance type. The intended treatment Z is unconfounded
and only a↵ects Y via X, meaning that it is a valid instrument.

A (randomized) bandit algorithm ⇡ is a mapping from the step t and the observed data
up to time t, Dt = {Z1, X1, Y1, . . . , Zt�1, Xt�1, Yt�1}, to a probability distribution over the
arms [m], which determines how we sample the arm pulled Zt in step 2 of the IAB problem.
Equivalently, ⇡ is an assignment to the random variable Zt in the random process defining
the problem such that it is independent of present and future given the past. Under an
algorithm ⇡, the random process (Z1, X1, Y1), (Z2, X2, Y2), . . . is well defined and we can
compute various cumulative expectations over it, which we will call regret. We emphasize
that a probability or expectation is taken under the algorithm ⇡ by P⇡ and E⇡, respectively.

In the IAB problem, there are various divergent notions of regret, which we discuss after
reviewing background and related literature. These divergent notions all coincide when the
IAB problem is an instance of MAB, but are otherwise generally distinct.

2.1 Background and Related Literature

The IAB problem is an example of a stochastic bandit problem: the distributions of reward
and, in the IAB case, compliance type are fixed and stationary but unknown. We focus
solely on this stochastic setting. We refer the reader to Bubeck and Cesa-Bianchi (2012)
for a comparison of stochastic and adversarial settings in the classic MAB problem. Regret
in the classic MAB problem is defined as the di↵erence between the cumulative reward of
always pulling the a priori best single arm (as per the unknown reward distributions) and
the cumulative reward of the bandit policy up to a horizon T . When all units are compliers,
the IAB problem reduces to the stochastic MAB, for which Lai and Robbins (1985) in their
seminal paper lower bounded the expected regret of any policy by the logarithm of T times
factors that depend on the di↵erence between suboptimal and optimal arms. A minimal
requirement of a bandit algorithm for MAB is that it be order optimal in that it achieve
regret that has order no more than logarithmic in T . The popular UCB algorithm (Auer
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et al., 2002) is an example of one such order optimal algorithm. Recently, Agrawal and
Goyal (2012) proved that the posterior sampling algorithm of Thompson (1933) is also
order optimal. Other example include Kaufmann et al. (2012); Garivier and Cappé (2011);
Maillard et al. (2011).

A variant of the MAB problem is the MAB with latent class (MABLC) problem (Mail-
lard and Mannor, 2014), in which the reward vector is jointly drawn with class membership
and regret is defined as the di↵erence between the cumulative reward of always pulling the
a priori best arm given class and the cumulative reward of a bandit policy that is given an
observation of a finer quantity than class (such as a unit identity) before pulling an arm.
In the IAB problem, we can conceive of compliance type as a latent class, especially in
light of the possibility of heterogeneous rewards, i.e., we may have µx| 6= µx|0 for  6= 

0.
Compliance type as a class does not influence any actual bandit algorithm for IAB because
nothing indicative of compliance type is revealed before an arm pull. Nonetheless, we get
di↵erent forms of IAB regret depending on whether we consider benchmark policies that
may or may not be allowed to leverage a priori class knowledge. For the IAB problem, as
we show in the next section, in first case, there is no hope of sublinear regret and, in the
second, regret may be negative, and so in fact an intermediate form of regret is needed,
which considers latent class but restricts to a certain subpopulation of units.

Another variant of the MAB problem is the MAB with unobserved confounder (MABUC)
problem (Bareinboim et al., 2015), where a latent factor influences reward distributions
and the experimenter, rather than being given a finer observation as in MABLC, is given
a coarser observation of an “intuitive” arm choice, corresponding to a particular station-
ary joint distribution of latent factors, rewards, and “intuitive” arms. The authors show
that when regret is measured relative to the best arm given the latent factor rather than
marginal best choice, standard bandit algorithms that use only observations of pulled arm
and resultant reward may achieve linear regret. Similarly, we will show that in the IAB
problem, if one is not interested in the simple intent-to-treat regret (which we will define),
then standard bandit algorithms achieve linear regret under most alternative notions of re-
gret that consider causal e↵ects. Lattimore et al. (2016) consider a closely related problem
to the MABUC without observation of an “intuitive” arm and focusing on the simple regret
of eventually recommending the best arm.

Instrumental variable analysis is a method to estimate causal relationships between a
possible treatment variable and an outcome variable in the absence of a fully randomized
experiment that intervenes on the treatment in a fully controlled manner (Angrist and
Pischke, 2008). It relies on the availability of an instrumental variable, which may only
a↵ect the outcome via the treatment and is associated with the treatment. When all of
these relationships are additive (i.e., linear) the two-stage least squares (2SLS) procedure,
which first regresses treatment on the instrument and then regresses the outcome on the
result, provides a consistent estimate of causal e↵ect. When this e↵ect is heterogeneous in
the population (i.e., not simply additive), this estimate is in fact of a particular average
e↵ect known as the local-average treatment e↵ect, or LATE (Imbens and Angrist, 1994).

In a clinical trial with non-compliance, a randomized ITT is an example of an instru-
mental variable. When treatment is binary (treatment vs control), 2SLS is equivalent to
the Wald estimator (Wald, 1940), which is the ratio of a näıve estimate of the ITT e↵ect,
given by the di↵erence in mean outcomes in units intended for treatment and for control,
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divided by an estimate of the number of compliers p◆, given by the di↵erence in mean num-
ber receiving treatment among the two intended groups. When the population contains
only compliers, treatment-always takers, and control-always takers, the Wald estimator is
consistent for the LATE, which in this case is the average e↵ect on the compliers (Angrist
et al., 1996; Little and Yau, 1998).

In the IAB problem, Zt corresponds to the ITT for unit t and, as such, is an example of
an instrumental variable. The treatment may be more than binary as there may be more
than two arms (m � 2) and Zt is chosen dynamically for each t by the bandit algorithm as
rounds progress. The question we ask is how to best choose Zt so to balance exploration
and exploitation. The right way to measure how well we do this hinges on what is our goal.
If it is to get at the best causal e↵ect of a treatment then we must consider new forms of
regret that do not exist in the vanilla MAB context. In the next section, we develop several
new notions of regret for the IAB problem and characterize their behavior.

3. IAB Regret

The target of a bandit algorithm is to achieve low regret. Unlike the MAB problem, in
the case of IAB there are a wide range of candidate definitions for regret, with di↵erent
meanings. In the case that an instance of IAB is an instance of MAB (p◆ = 1), however, we
show that all of these notions of regret in fact coincide with the classic notion of MAB regret.
In this section, we present the various notions of regret and characterize their behavior.

3.1 Intent-to-Treat Regret

In the case that one is not interested in the causal e↵ect of treatment and only in the
observational resultant rewards of the ITT instrument, then the IAB problem can easily
be reduced to an MAB problem. We simply ignore the instrumental aspect of the arms
and ignore all bandit feedback of non-compliance. This leaves us with only arm pulls and
resultant rewards, disregarding the mechanism by which the reward was begotten. If we do
this, then the only relevant notion of regret is the MAB regret, which measures how much
regret we have in pulling one instrument arm compared to another instrument arm, rather
than compared to any other possible treatment.

In the IAB problem, we call this the ITT regret. To define ITT regret, let z
⇤ be an

arbitrary choice in the set of marginally optimal instrument arms:

z
⇤ 2 Z⇤ = argmaxz2[m] µ̃z, µ̃

⇤ = µ̃z⇤ .

The ITT regret is then

ITTRegret(T ) =
PT

t=1 (Yt(�t(z⇤))� Yt) .

For every instance of the IAB problem, we can consider an underlying stochastic MAB
problem given by the reward distributions ⌫z =

P
2[m]m p⌫(z)| for z 2 [m]. The stan-

dard MAB regret in this MAB problem coincides with the ITT regret of the IAB problem.
Correspondingly, we can transform any MAB algorithm to an IAB algorithm by simply
recording the rewards Yt for instrument-arm pulls Zt and ignoring the in-fact applied treat-
ment Xt. Then, naturally, if the original MAB algorithm has sublinear expected MAB
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Figure 2: Various Notions of IAB Regret in Ex. 1
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regret guarantees then it will also have sublinear expected ITT regret guarantees because
the two are identical.

When we apply this transformation to the UCB algorithm, we call the resulting algo-
rithm UCB-ITT. An alternative transformation would have us update the estimates of the
UCB algorithm as though the arm Xt were pulled rather than Zt, corresponding to an
estimate of the mean rewards conditioned on Xt. We call the resulting algorithm UCB-AT
for “as treated.” UCB-AT has no general ITT regret guarantees but is, naturally, the same
as UCB-ITT in the specific case that the IAB problem is an instance of MAB.

3.2 Static Treatment Regret

ITT regret completely ignores the causal e↵ects of treatments. Minimizing ITT regret, one
does not seek to select or identify the best treatment because, in particular, the benchmark
is the best instrument rather than the best treatment. An alternative notion of regret we
can consider in the IAB problem is the cumulative reward of a bandit algorithm relative
to the cumulative reward of the best single treatment, which we call the static treatment
regret. This captures the di↵erence to the reward that would be achieved by implementing
the best single treatment in the whole population as the one and only treatment option
with no possible alternatives.

Let us define x
⇤ as an arbitrary choice in the set of singly-optimal treatments:

x
⇤ 2 X ⇤ = argmaxx2[m] µx, µ

⇤ = µx⇤ .

The static treatment regret is defined as

STRegret(T ) =
PT

t=1 (Yt(x
⇤)� Yt) .

While static treatment regret corresponds to MAB regret for MAB instances, in general
IAB instances it can be negative. Given a policy ⇡, it is clear that if there is a z 2 [m]
with E⇡

PT
t=1 I [Zt 6= z] = o(T ) and µ

⇤
< µ̃z then E⇡ STRegret(T ) = O(�T ). That is

to say, because compliance correlates with rewards, it is, for example, feasible that even
when pulling only a single instrument arm repeatedly, the compliance always forces the
application of the treatment that, conditioned on the particular compliance type, does in
fact have a better conditional expected reward than the the treatment that is marginally
best, i.e., is best on average over all types, so that µ⇤

< µ̃z. An example is given below.
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Example 1. Consider an example with m = 3 arms, p◆ = 5/8, p = 3/8 where  = (1, 1, 2),
Y (x) = µx|�+✏, ✏ ⇠ Unif[�1, 1], (µ1|◆, µ2|◆, µ3|◆) = (1,�1, 0), and (µ1|, µ2|, µ3|) = (0, 4, 2).
Then, we have that (µ1, µ2, µ3) = (25/8, 27/8, 13/4) so that x

⇤ = 2 and (µ̃1, µ̃2, µ̃3) =
(25/8, 15/8, 4) so that z⇤ = 3 and µ

⇤
< µ̃

⇤.
We consider running UCB-ITT and UCB-AT on a single sample path of the data and

recording the regret accumulated. We plot the ITT regret in Fig. 2a and the static treatment
regret in Fig. 2b. We note that UCB-ITT achieves logarithmic ITT regret and UCB-AT
achieves linear. Both have negative linear static treatment regret

Because of this potential negativity, static treatment regret may be inappropriate in gen-
eral for characterizing the performance of IAB algorithms and, in particular, their learning
of the “best” treatment for maximal causal e↵ect.

3.3 Latent-Class Treatment Regret

To derive an alternative notion of regret, we considers the IAB problem with the unobserved
compliance type � being a latent class, as in MABLC (Maillard and Mannor, 2014) but
without a contextual observation. Because compliance type may correlate with rewards, we
may consider our performance relative to the cumulative outcome of the best treatment for
each type.

Let us define x
⇤
 as an arbitrary choice in the set of optimal treatments for unit type :

x
⇤
 2 X ⇤

 = argmaxx2[m] µx|, µ
⇤
| = µx⇤

|.

The latent-class treatment regret is defined as

LCTRegret(T ) =
PT

t=1

�
Yt(x⇤�t

)� Yt
�
.

Unlike the static treatment regret, the latent-class treatment regret is necessarily non-
negative in expectation for any bandit algorithm. On the other hand, in general settings,
the latent-class treatment regret is also linear for any bandit algorithm.

Theorem 1. If there exists ` � 1 and 1, . . . ,` such that

p1 , . . . , p` > 0 and
T`

j=1 
�1
j (X ⇤

j
) = ?

then E⇡ LCTRegret(T ) = ⌦(T ) for any bandit algorithm ⇡.

Here 
�1(S) = {z 2 [m] : (z) 2 S} denotes the pre-image of a set S ⇢ [m]. All proofs

are given at the end, in Secs. A–B.
The condition says that there exist compliance types such that no single instrument

achieves optimal treatment for all types. This can happen when just a single compliance
type has no instrument achieving its optimal treatment such as a 1-always-taker for which
treatment 2 is optimal. More realistically, this can happen when both compliers and non-
compliers exist (p◆ 2 (0, 1)) and there is at least one non-compliance class for which no
optimal instrument is also in the optimal treatment set for compliers, X ⇤

◆ . So, in a general
setting, treatment regret is always hopelessly linear, regardless of our algorithm. For ex-
ample, in the case of Ex. 1, the latent-class treatment regret of UCB-ITT and UCB-AT is
shown in Fig. 2c and is indeed linear.

Without hope of achieving sublinear regret, latent-class treatment regret is unhelpful in
characterizing “good” and “bad” bandit algorithms for the IAB problem in general settings.
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3.4 Compliers’ Regret

Finally, we consider an intermediate form of regret. In the previous section we saw that
because units do not always comply with treatment, we may end up with linear treatment
regret when comparing to the best treatment (given compliance type). Instead, we may
consider only the units that comply, for whom we have hope of providing any help. As
we will see, under certain homogeneity assumptions, having sublinear complier’s regret
corresponds to bandit algorithms that learn the best treatment(s) in terms of causal e↵ect.

The compliers’ regret is defined as

CRegret(T ) =
PT

t=1 I[�t = ◆] (Yt(x⇤◆ )� Yt)

There may be various situations where it is far more relevant to identify causal e↵ects
and measure regret in terms of relative treatment e↵ect rather than focusing on ITT e↵ect
and ITT regret. For example, if the bandit problem is modeling a clinical trial, then the
foremost concern is finding the best treatment and a secondary concern is good outcomes
for all patients. Moreover, it may be daft to assign a particular treatment not because it
has a good causal e↵ect but because, on average, over the trial population, which includes
non-compliers, it will lead to better outcomes Indeed, the population and compliance rates
di↵er significantly between the trial stage and an implementation stage since, with enough
evidence of e↵ect, all subjects might comply. Thus, in clinical trials and other dynamic
RCTs, it is more appropriate to consider treatment regret, and the compliers’ regret is the
appropriate treatment regret to consider as we have ruled out the alternative forms.

We begin by summarizing the (self-evident) fact that, when the IAB problem is an
instance of MAB, all forms of regret we presented are equivalent:

Theorem 2. If p◆ = 1 then

ITTRegret(T ) = STRegret(T ) = LCTRegret(T ) = CRegret(T ).

Next, we proceed to analyze compliers’ regret. First, we show that, in general, one
cannot have both sublinear ITT and compliers’ regret.

Assumption 1 (Compliers exist). p◆ = P(� = ◆) > 0.

Theorem 3. If X ⇤
◆ \ Z⇤ = ? and Asm. 1 holds then

E⇡ ITTRegret(T ) + E⇡ CRegret(T ) = ⌦(T ).

Corollary 4. If E⇡ ITTRegret(T ) = o(T ), X ⇤
◆ \ Z⇤ = ?, and Asm. 1 holds then we have

that

E⇡ CRegret(T ) = ⌦(T ).

The corollary shows that, in general setting, standard bandit algorithms such as UCB-
ITT must achieve linear compliers’ regret because they achieve sublinear ITT regret. That
means, in particular, that they are not appropriate for learning the best treatment(s). In
the case of Ex. 1, Fig. 2d shows the linear compliers’ regret of UCB-ITT and UCB-AT.

However, in one simple two-armed case, we can in fact show that ITT regret is exactly
identical to compliers’ regret even in the presence of non-compliance:
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Figure 3: IAB Regret in Ex. 2
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Theorem 5. If m = 2 and �(2) � �(1). Then

X ⇤
◆ = Z⇤

and CRegret(T ) = ITTRegret(T ).

This case corresponds to the identifiable case in Angrist et al. (1996). In general settings,
the identity does not hold. But in order to achieve sublinear control on compliers’ regret
we will need to restrict to the homogeneous setting.

4. Homogeneous IAB and IAB Bandit Algorithms

Next, in order to devise algorithms that can achieve sublinear compliers’ regret we consider
the homogeneous setting, where all relative treatment e↵ects are independent of compliance
type.

Assumption 2 (Homogeneity). Y (x)� Y (x0) is mean-independent of � for all x, x0 2 [m],
i.e.,

E[Y (x)� Y (x0) | �] = E[Y (x)� Y (x0)] 8x, x0 2 [m].

A stronger form of homogeneity, which we do not require, is that the additive model
Y (x) = µx+ ✏ holds, which is both necessary and su�cient for Y (x)�Y (x0) to be constant.

Under Asm. 2, we immediately have that X ⇤
 = X ⇤ for every . We will seek bandit

algorithms that are able to identify µ and hence X ⇤. Toward that end define the transition
matrix

Pzx = P (�(z) = x) =
P

2[m]m:(z)=x p.

Theorem 6. Under Asm. 2,

µ̃z =
Pm

x=1 Pzxµx.

Thus under homogeneity, a bandit algorithm need only estimate µ̃ and P in order to
estimate µ via P

�1
µ̃. Next, we present two simple bandit algorithms that proceed in that

way.

First, we define some statistics. We let T (t)
z = {s  t : Zs = z} be the set of rounds up to

t when z was pulled, n(t)
z = |T (t)

z | the number times z was pulled, n(t)
zx =

P
s2T (t)

z
I [Xs = x],

the number times z was pulled and x was applied, P̂ (t)
zx = (n(t)

z )�1
n
(t)
zx the direct estimate of

P with data up to t, ˆ̃µ(t)
z = 1

n
(t)
z

P
s2T (t)

z
Ys, the direct estimate of µ̃ with data up to t, µ̂(t) =

10
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(P̂ (t))�1 ˆ̃µ(t) the plug-in estimate µ arising from Thm. 6, and ẑ
(t) 2 argmaxz=1,...,m µ̂

(t�1)
z a

greedy estimate of the best treatment based on all the data available at the beginning of
round t. The estimate µ̂

(t) is analogous to the 2SLS procedure.
We next present an ✏-decay type of algorithm and a fixed-schedule algorithm.

2SLS-✏-decay(↵)
At each round t, with probability m/(↵t) pull a uniformly random arm and
otherwise pull ẑ(t).

2SLS-fixed-schedule(↵)

Let z(t)0 2 argminz=1,...,m n
(t�1)
z ; if n(t�1)

z
(t)
0

< log(t)/↵ then pull z(t)0 and other-

wise pull ẑ(t).

Under certain assumptions, we can show that both of these algorithms can achieve loga-
rithmic regret. These regret bounds are based on new concentration inequalities proven in
Sec. B.

Assumption 3 (Identifiability). P is invertible, i.e.,

�min(P ) > 0.

Assumption 4 (Subgaussian Rewards). There exists  > 0 such that

Ee�(Y (x)�µx)  e
 �2 8� 2 R.2

Theorem 7. Suppose

2↵  �
2
min(P )min

�
1/(8m),minx62X ⇤(µ⇤ � µx)2/(16m 

2)
 
,

2↵  1, and that Asms. 2, 3 and 4 hold. Then, for a constant C > 0, playing 2SLS-✏-

decay(↵) has regret

E⇡ CRegret  p◆
Pm

x=1
µ⇤�µx

↵ log(T ) + C.

Theorem 8. Suppose

↵ < �
2
min(P )min

�
1/(8m),minx62X ⇤(µ⇤ � µx)2/(16m 

2)
 

and that Asms. 2, 3 and 4 hold. Then, for constant C > 0, 2SLS-fixed-schedule(↵) has

regret

E⇡ CRegret  p◆
Pm

x=1
µ⇤�µx

↵ log(T ) + C.

These results, however, depend on tuning ↵ based on problem-specific parameters.
Nonetheless, motivated by these result, we devise a version of the fixed-schedule algorithm
that adaptively estimates theses parameters and the resulting ↵ but has no theoretical
regret guarantees.

2. If Y (x) 2 [a, b] then Hoe↵ding’s lemma is the statement that Asm. 4 holds with  = (b� a)2/8. If Y (x)
is normal then Asm. 4 holds with  equal to half its variance.

11
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2SLS-adaptive(�)
Let

�̂ = inf
n
maxz=1,...,m µ̂

(t�1)
z � µ̂

(t�1)
z0 > 0 : z0 = 1, . . . ,m

o

(letting �̂ = 0 if the inf is not feasible) and let ↵̂(t) = ��
2
min(P̂

(t�1))�̂2/(8m(�̂+p
2 )). Play 2SLS-fixed-schedule(↵̂(t)) for this round.

Example 2. We consider an example of a homogeneous IAB with m = 5. We let Y = µx+✏

where µ = (0.9, 1, 1, 1, 2) and ✏ ⇠ N (0, 1) so that x
⇤ = 5. If ✏ � ���1(0.1) (where

� is the normal CDF) then � = 
(1) and if ✏  ��1(0.1) then � = 

(5). Otherwise,
independently with probability 1/8, � = 

(5), with probability 3/8, � = (1, 2, 3, 4,!), and
with probability 1/2, � = (5, 5, 5, 5,!), where ! ⇠ multinom(1/7, 2/7, 2/7, 2/7, 0). This
leads to µ̃ = (1.4, 1.5, 1.5, 1.5, 1.2) so that Z⇤ = {2, 3, 4}. We let � = 20 and ↵

⇤ be the the
quantity in the bound in Thm. 8.

We simulate a single sample path where we apply each of UCB-ITT, UCB-AT, 2SLS-
✏-decay(�↵⇤), 2SLS-fixed-schedule(�↵⇤), and 2SLS-adaptive(�). We use � = 20 because
the bounds in the theorems are conservative. We plot the resulting ITT and compliers’
regrets in Fig. 3, separating between plots of algorithms that achieve linear and sublinear
regret. We note that UCB-ITT achieves sublinear ITT regret but linear compliers’ regret
whereas our new algorithms achieve sublinear complier’s regret and linear ITT regret. In
particular, the heuristic adaptive policy seems to perform well without needing to know the
problem-specific parameters. UCB-AT achieve linear regret in all cases.

5. Conclusion

We considered a modification of the classic MAB where the arms represented mere instru-
ments so that the assigned and applied treatment may di↵er. Such a setting arises when
experimental units may not always comply with assigned treatments, as may be the case in
any trial involving human subjects. In fact, in such trials, experience shows that noncom-
pliance may be extremely prevalent. The possibility of noncompliance gave rise to our new
IAB problem and we showed that noncompliance meant that there are a variety of possible
ways to measure regret, all of which are generally di↵erent but coincide in the case of the
classic MAB problem. However, by mathematically characterizing these divergent notions
of regret, both for any bandit algorithm and for standard bandit algorithms that achieve
sublinear ITT regret, we argued that an appropriate form of regret when one cares about the
causal e↵ect of treatments is the compliers’ regret. As standard bandit algorithms achieve
linear compliers’ regret, we developed three new bandit algorithms that are apt for the IAB
problem. We proved logarithmic regret bounds on two of these, but this depended on the
algorithm being tuned to problem parameters. The third algorithm dynamically estimated
these parameters but has no theoretical guarantee, although it performs well empirically.
In future work, we hope to develop parameter-free bandit algorithms for the IAB problem
with theoretical guarantees.

12
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Appendix A. Proofs of IAB Regret Characterizations

Proof of Thm. 1. Set

pmin = min
j=1,...,`

pj ,

� = min
j=1,...,`

min
z /2�1

j (X ⇤
j

)
E[Y (x⇤j

)� Y (j(z)) | � = j ].

Then, by independence of Zt, union bound, and De Morgan’s law,

E⇡ LCTRegret � �E⇡

TX

t=1

X̀

j=1

I[�t = j , Zt /2 
�1
j (X ⇤

j
)]

= �

TX

t=1

X̀

j=1

pkjP⇡(Zt /2 
�1
j (X ⇤

j
))

� �pmin

TX

t=1

X̀

j=1

P⇡(Zt /2 
�1
j (X ⇤

j
))

� �pmin

TX

t=1

P⇡(_`
j=1Zt /2 

�1
j (X ⇤

j
))

= �pmin

TX

t=1

(1� P⇡(Zt 2 ?))

= �pminT = ⌦(T )

Proof of Thm. 3. Define �0 = minz2X ⇤
◆
E[Y (�(z⇤))�Y (�(z))], �00 = minz /2X ⇤

◆
E[Y (x⇤◆ )� Y (z) |

� = ◆], � = min{�0, �00}, and TX ⇤
◆
=
PT

t=1 I [Zt 2 X ⇤
◆ ] . By assumption, we have � > 0. By

independence of Zt, we have

E⇡ ITTRegret � E
TX

t=1

I [Zt 2 X ⇤
◆ ] (Yt(�t(z

⇤))� Yt)

� �
0ETX ⇤

◆
� �ETX ⇤

◆
.

By independence of Zt, we also have

E⇡ CRegret � E
TX

t=1

I [�t = ◆, Zt /2 X ⇤
◆ ] (Yt(x

⇤
◆ )� Yt)

� �
00E

TX

t=1

I [�t = ◆, Zt /2 X ⇤
◆ ]

� �E
TX

t=1

(I [�t = ◆]� I [Zt 2 X ⇤
◆ ])

= �(p◆T � ETX ⇤
◆
).

Together, E⇡ ITTRegret+E⇡ CRegret = ⌦(T ).
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Proof of Thm. 5. By assumption �(2) � �(1), we must have � 2
�
◆,

(1)
,

(2)
 
. Therefore,

E[Y (�(z))] = E[E[Y (�(z)) | �]]
= p◆E[Y (z) | � = ◆] + p(1)E[Y (1) | � = 

(1)] + p(2)E[Y (2) | � = 
(2)].

Maximizing both sides over z 2 [m], we see that Z⇤ = X ⇤
◆ . Therefore,

ITTRegret =
TX

t=1

I[�t = ◆](Yt(�t(z
⇤))� Yt) +

TX

t=1

I[�t = 
(1)](Yt(�t(z

⇤))� Yt)

+
TX

t=1

I[�t = 
(2)](Yt(�t(z

⇤))� Yt)

= CRegret+
TX

t=1

I[�t = 
(1)](Yt(1)� Yt(1)) +

TX

t=1

I[�t = 
(2)](Yt(2)� Yt(2))

= CRegret

Proof of Thm. 6. Fix x
0 2 [m]. By Asm. 2 we have E[Y (x)� Y (x0) | �(z) = x] = µx � µx0 .

Therefore:

µ̃z = E[Y (�(z))] =
Pm

x=1 PzxE[Y (x) | �(z) = x]

=
Pm

x=1 Pzx(µx � µx0 + E[Y (x0) | �(z) = x])

=
Pm

x=1 Pzxµx � µx0 + µx0 =
Pm

x=1 Pzxµx

Appendix B. Proofs of Regret Bounds

Let us define t
(s)
z = inf{t : n(t)

z � s} as the time when z was pulled for the s
th time. Define

n
((s))
zx = n

(t
(s)
z )

zx , T ((s))
z = T (t

(s)
z )

z , and P̂
((s))
z = P̂

(t
(s)
z )

z . Then define P̂
((s1,...,sm)) as the matrix

whose z
th row is P̂

((sz))
z , i.e., its (z, x) entry is P̂

t
(sz)
z

zx . Similarly, define ˆ̃µ((s1,...,sm)) as the

vector whose z
th entry is ˆ̃µ(t

(sz)
z ). Finally, define µ̂

((s1,...,sm)) = (P̂ ((s1,...,sm)))�1 ˆ̃µ((s1,...,sm)).

Note that, for a fixed s, ˆ̃µ(t
(s)
z ) is simply an empirical average of s iid draws of the reward

when z is pulled. Similarly, for fixed s, P̂ t
(s)
z

zx is simply an empirical average of s iid draws
of the indicator whether x is applied when z is pulled.

In the following, for a matrix M , the sup-norm-induced matrix norm is kMk1 =
supkvk11 kMvk1 = maxi

P
j |Mij |.

Lemma 1. Fix s1, . . . , sm. Then P(kP̂ ((s1,...,sm)) � Pk1 > ✏) 
Pm

z=1 e
m� 1

8 sz✏
2
.

Proof. Define ez 2 Rm as the one-hot unit vector with one in coordinate z. Let us define
the empirical Rademacher complexities

bR((sz))
z =

1

2sz

X

⇠2{�1,+1}T
((sz)
z )

sup
kvk11

1

sz

X

u2T ((sz))
z

⇠uv
T
eXu .
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Note that

kP̂ ((sz))
z � Pzk1 = sup

kvk11

0

@ 1

sz

X

u2T ((sz))
z

v
T
eXu � v

T
Pz

1

A

Then by Bartlett and Mendelson (2003), we have that with probability at least 1� ⌘,

kP̂ ((sz))
z � Pzk1  2E[bR((sz))

z ] +
p
log(1/⌘)/(2sz)

By linearity and duality of norms, we have

bR((sz))
z =

1

2sz

X

⇠2{�1,+1}sz

�����
1

sz

szX

u=1

⇠ueXu

�����
1

=
1

sz

mX

x=1

1

2sz

X

⇠2{�1,+1}sz

�����

szX

u=1

I [Xu = x] ⇠u

�����

=
1

sz

mX

x=1

1

2n
((sz))
zx

X

⇠2{�1,+1}n
((sz))
zx

������

n
((sz))
zxX

u=1

⇠u

������

=
1

sz

mX

x=1

1

2n
((sz))
zx �1

&
n
((sz))
zx

2

'✓
ml

n
((sz))
zx
2

m
◆

 1

sz

mX

x=1

q
n
((sz))
zx =

1
p
sz

mX

x=1

q
P̂

((sz))
zx 

r
m

sz
.

Therefore, by 2 � 1/
p
2, Jensen’s inequality, and the concavity of square root, with proba-

bility at least 1� ⌘,
kP̂ ((sz))

z � Pzk1  4
p
(m� log ⌘)/(2sz).

Finally, P(kP̂ ((s1,...,sm)) � Pk1 > ✏) = P(9z : kP̂ ((sz))
z � Pzk1 > ✏) and the union bound

complete the proof.

The Rademacher complexity argument (compared to an argument based on Hoe↵ding
inequality’s and the union bound) is critical to achieving the correct rate in sz/m.

Lemma 2. Fix s1, . . . , sm and let ⇠ 2 (0, 1) and 0 < �  �min(P ). Then

P(k(P̂ ((s1,...,sm)))�1k1 >
p
m�

�1(1� ⇠)�1) 
Pm

z=1 e
m� 1

8 sz�
2⇠2/m

Proof. We have

k(P̂ ((s1,...,sm)))�1k1 
p
mk(P̂ ((s1,...,sm)))�1k2 =

p
m

�min(P̂ ((s1,...,sm)))


p
m

(� � kP̂ ((s1,...,sm)) � Pk2)+
 1

(�/
p
m� kP̂ ((s1,...,sm)) � Pk1)+

.

Applying Lemma 1 with ✏ = �⇠/
p
m yields the result.
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Lemma 3. Fix s and let Asm. 4 hold. Then,

P(| ˆ̃µ((s))
z � P̂

((s))
z µ| > ✏)  2e�s✏2/(4 )

.

Proof. Note that we can rewrite

ˆ̃µ((s))
z � P̂

((s))
z µ = 1

s

P
u2T ((s))

z
(Yu(Xu)� µXu).

By Markov’s inequality,

P(ˆ̃µ((s))
z � P̂

((s))
z µ > ✏)

 inf
��0

e
�s�✏

Y

u2T ((s))
z

E[e�(Yu(Xu)�µXu )]

 inf
��0

e
s( �2��✏) = e

�s✏2/(4 )
.

A symmetric argument and the union bound yields the result.

Lemma 4. Fix s1, . . . , sm. Let 0 < �  �min(P ) and Asm. 4 hold. Then,

P(kµ̂((s1,...,sm)) � µk1 > ✏)  2
Pm

z=1 e
m� sz�

2✏2

2m(2✏+
p
2 )2

Proof. Applying Lemma 2 with ⇠ = 2✏/(2✏+
p
2 ), applying Lemma 3 with ✏(1�f)��1

m
�1/2

for each z, the union bound twice, and 2  e
m yield the result.

Proof of Thm. 7. Let E(t) =
Pt

s=1 ✏s, B = maxx=1,...,m(µ⇤�µx), and � = minx62X ⇤(µ⇤�µx).

Let �t be one if at time step t we explored (random pull) and zero otherwise. Let ñ
(t)
z =P

s2T (t)
z

�s  n
(t)
z . Then,

E⇡ CRegret(T ) p◆
Pm

x=1(µ
⇤ � µx)E(T )

/m+B
P1

t=1 P(kµ̂((ñ
(t�1)
1 ,...,ñ

(t�1)
m )) � µk1 � �/2).

Note that E
(t�1) � m log(t)/↵ and E

(t)  m(log(t) + 1)/↵ so that the first regret term
is 

Pm
x=1 (µ

⇤ � µx)(log(T ) + 1)/↵. Let � = �
2
min(P )�2/(8m(� �

p
2 )2) > 0 and � =

1� e
��

> 0. By Lemma 4, because �t is independent of the data, and by the law of total

probability, we have that P(kµ̂((ñ
(t)
1 ,...,ñ

(t)
m )) � µk1 � �/2)  2em

Pm
z=1 E[e��ñ

(t)
z ]. Moreover,

logE[e��ñ
(t)
z ] =

Pt
s=1 log(e

��
✏t/m+ (1� ✏t/m))

 �
Pt

s=1�✏t/m = ��E(t)
/m.

Finally,
P1

t=1 e
��E(t�1)/m 

P1
t=1 t

��/↵ and by assumption 0 < ↵  min(�, 1)/2 < � so
that the second regret term is a finite constant.

Proof of Thm. 8. Let B = maxx=1,...,m(µ⇤ � µx), � = minx62X ⇤(µ⇤ � µx), �tz = I[n(t�1)

z
(t)
0

<

log(t)/↵, z = z
(t)
0 ], ñ(t)

z =
Pt

s=1 �tz, �t =
Pm

z=1 �tz, and s
(t) = dlog(t)/↵e. We then have

E⇡ CRegret(T )  p◆
Pm

x=1(µ
⇤ � µx)E⇡ñ

(T )
x +B

P1
t=1 P(kµ̂((s(t),...,s(t))) � µk1 � �/2).
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For the first regret term, we have ñ
(T )
x  1 + log(T )/↵ under ⇡ by construction and so the

same is true for E⇡ñ
(T )
x . For the second term, we invoke Lemma 4 and use s

(t) log t/↵ in
order to get

P(kµ̂((s(t),...,s(t))) � µk1 � �/2)  2emmt
� �2

min(P )�2

8↵m(�+
p
2 )2 .

By assumption, we have that
�2
min(P )�2

8↵m(�+
p
2 )2

> 1 so that the second regret term is a finite

constant.
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